Intrinsic membrane properties of locus coeruleus neurons in Mecp2-null mice.
نویسندگان
چکیده
Rett syndrome caused by mutations in methyl-CpG-binding protein 2 (Mecp2) gene shows abnormalities in autonomic functions in which brain stem norepinephrinergic systems play an important role. Here we present systematic comparisons of intrinsic membrane properties of locus coeruleus (LC) neurons between Mecp2(-/Y) and wild-type (WT) mice. Whole cell current clamp was performed in brain slices of 3- to 4-wk-old mice. Mecp2(-/Y) neurons showed stronger inward rectification and had shorter time constant than WT cells. The former was likely due to overexpression of inward rectifier K(+) (K(ir))4.1 channel, and the latter was attributable to the smaller cell surface area. The action potential duration was prolonged in Mecp2(-/Y) cells with an extended rise time. This was associated with a significant reduction in the voltage-activated Na(+) current density. After action potentials, >60% Mecp2(-/Y) neurons displayed fast and medium afterhyperpolarizations (fAHP and mAHP), while nearly 90% WT neurons showed only mAHP. The mAHP amplitude was smaller in Mecp2(-/Y) neurons. The firing frequency was higher in neurons with mAHP, and the frequency variation was greater in cells with both fAHP and mAHP in Mecp2(-/Y) mice. Small but significant differences in spike frequency adaptation and delayed excitation were found in Mecp2(-/Y) neurons. These results indicate that there are several electrophysiological abnormalities in LC neurons of Mecp2(-/Y) mice, which may contribute to the dysfunction of the norepinephrine system in Rett syndrome.
منابع مشابه
GABAergic synaptic inputs of locus coeruleus neurons in wild-type and Mecp2-null mice.
Rett syndrome is an autism spectrum disorder resulting from defects in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Deficiency of the Mecp2 gene causes abnormalities in several systems in the brain, especially the norepinephrinergic and GABAergic systems. The norepinephrinergic neurons in the locus coeruleus (LC) modulate a variety of neurons and play an important role in multipl...
متن کاملEffects of early‐life exposure to THIP on brainstem neuronal excitability in the Mecp2‐null mouse model of Rett syndrome before and after drug withdrawal
Rett syndrome (RTT) is mostly caused by mutations of the X-linked MECP2 gene. Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence obtained from Mecp2-/Y mice suggests that imbalanced excitation/inhibition in central neurons plays a major role. Several approaches may help to rebalance the excitation/inhibition, including agonists of GABAA receptors (GABA...
متن کاملTime-dependent modulation of GABA(A)-ergic synaptic transmission by allopregnanolone in locus coeruleus neurons of Mecp2-null mice.
Rett syndrome (RTT) is a neurodevelopmental disorder with symptoms starting 6-18 mo after birth, while what underlies the delayed onset is unclear. Allopregnanolone (Allop) is a metabolite of progesterone and a potent modulator of GABAA-ergic currents whose defects are seen in RTT. Allop changes its concentration during the perinatal period, which may affect central neurons via the GABAA-ergic ...
متن کاملAlterations in the cholinergic system of brain stem neurons in a mouse model of Rett syndrome.
Rett syndrome is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine system originating mainly in the locus coeruleus (LC) is defective in Rett syndrome and Mecp2-null ...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 298 3 شماره
صفحات -
تاریخ انتشار 2010